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Abstract

This paper studies the problem of plate vibration under complex and irregular internal support conditions. Such a

problem has its widely spread industrial applications and has not been addressed in the literature yet, partially due to

the numerical difficulties. A novel computational method, discrete singular convolution (DSC), is introduced for solving

this problem. The DSC algorithm exhibits controllable accuracy for approximations and shows excellent flexibility in

handling complex geometries, boundary conditions and internal support conditions. Convergence and comparison

studies are carried out to check the validity and accuracy of the DSC method. Case studies are considered to the

combination of a few different boundary conditions and irregular internal supports. The latter are generated by using an

image processing algorithm. Completely independent verifications are conducted by using the established pb-2 Ritz

method, which is available for two relatively simpler support patterns. The morphology of the first few eigenmodes is

found to be localized to largest support-free spatial regions. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analysis of plates with internal supports has been a problem of interest to engineers for over four
decades. Much of the interest likely stems from potential applications of analyses to practical problems
including the vibration of printed circuit boards, vibrator of cellular phones and other acoustic devices,
column supported slabs, bolted aircraft and ship bodies. Indeed, most commonly used components in
modern structures are the bolted, riveted or spot-welded rectangular plates which can be modeled as plates
with internal supports.

Most early theoretical analyses were limited to rectangular plates with continuous internal line supports
in one direction. For example, Veletsos and Newmark (1956) studied the problem of vibration of a rect-
angular plate simply supported at two opposite edges and continuous over rigid supports perpendicular to
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those edges, using Holzer’s method. A semi-graphical approach was employed by Ungar (1961) to study a
similar problem. Using the dynamic edge effect approach developed by Bolotin (1961a), Bolotin (1961b)
and Moskalenko and Chen (1965) analyzed plates with two and three internal line supports in one
direction. Comprehensive studies were conducted by Cheung and Cheung (1971) on multi-span plates by
using their finite strip method. Elishakoff and Sternberg (1979) treated similar multi-span plates in one
direction, by using a modified Bolotin method.

Using the receptance method, Azimi et al. (1984) obtained closed form solutions for the vibration of
simply supported multi-span rectangular plates. Mizusawa and Kajita (1984) utilized the B-spline functions
in association with the Rayleigh–Ritz method to analyze free vibration of one-direction continuous plates
with arbitrary boundary conditions.

Later on, there was much effort on vibration of rectangular plates with internal line supports which are
continuous in two directions. Obviously, such a problem is relatively more complicated than the early ones.
For example, Takahashi and Chishaki (1979) considered rectangular plates with a number of line supports
in two directions by using a sine series analysis. In the framework of their finite strip method, Wu and
Cheung (1974) studied free vibration of continuous rectangular plates in one or two directions by using the
multi-span vibrating beam functions. Kim and Dickinson (1987) analyzed free vibration of plates with
internal line supports by using a set of one-dimensional orthogonal polynomial functions as the Rayleigh–
Ritz basis. Liew and Lam (1991) studied similar multi-span plates by employing the two-dimensional or-
thogonal polynomial functions as the Ritz trial functions. Liew et al. (1993a) investigated vibration of
rectangular Mindlin plates with internal line supports in one or two directions by using the pb-2 Ritz
method. In fact, their method is capable of analyzing plates with internal straight line supports in an ar-
bitrary direction. By using appropriate polynomials, Zhou (1994) modified single-span vibrating beam
functions to account for the internal line supports in one or two directions. Kong and Cheung (1995)
advanced this approach by combining Zhou’s trial functions with the finite layer method to study the
vibration of shear-deformable plates with intermediate line supports. Li and Gorman (1993a,b) considered
plates with diagonal line supports with the superposition method. The same problem was also addressed by
Liew et al. (1993a) using their pb-2 Ritz method.

In practical engineering applications, many problems concern with plates having partial internal line
supports. Liew and Wang (1994) studied vibration of triangular plates with partial internal curved line
supports by using the pb-2 Ritz method. The point simulation approach was employed to treat the partial
curved line supports in the plates.

Another class of problems which are frequently encountered in plate vibration analysis are plates with
point supports. Both analytical and numerical methods are developed for treating these problems. Gorman
(1981) introduced an auxiliary plate for which accurate solution is easily available to the original problem
and the combined solution satisfies the governing differential equation, the boundary and support condi-
tions. Since there is no exact solution in general, various numerical approaches, such as the finite difference
method (Nishimura, 1953; Cox, 1955; Johns and Nataraja, 1972), the Rayleigh–Ritz method (Nowacki,
1953; Dowell, 1974; Narita, 1984; Laura and Cortinez, 1985), the Galerkin method (Yamada et al., 1985),
the modal constraint method (Kerstens, 1979; Gorman, 1981), the finite element method (Mirza and Petyt,
1971; Rao et al., 1973; Rao et al., 1975; Utjes et al., 1984), the spline finite strip method (Fan and Cheung,
1984) and the flexibility function method (Bapat and Suryanarayan, 1989), are utilized for these problems.
Recently, Liew et al. (1994a) and Kitipornchai et al. (1994) employed their pb-2 Ritz method to treat plates
with point supports with success. The Lagrange multiplier approach (Kitipornchai et al., 1994) and a new
constraint function approach (Liew et al., 1994a) were used to impose the point support constraints. Their
method exhibits the flexibility in handling plates of arbitrary shapes with multiple point supports.

Various methods of analysis were further extended to treat plates of different shapes and thickness, with
general internal supports. For example, Young and Dickinson (1993) used the Rayleigh–Ritz method with
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simple polynomials as admissible functions to study the vibration of rectangular plates with straight or
curved internal line supports. Liew and his co-workers used the pb-2 Rayleigh–Ritz method to study several
cases, such as the vibration of triangular plates with curved internal supports (Liew, 1993), the vibration of
rectangular Mindlin plates with multiple eccentric internal ring supports (Liew et al., 1993b) and the vi-
bration of in-plane loaded plates with straight line/curved internal supports (Liew and Wang, 1993a). They
also demonstrated that their method works well for the vibration of skew Mindlin plates with oblique
internal line supports (Xiang et al., 1994), the vibration of skew plates with internal line supports (Liew and
Wang, 1993b), the buckling and vibration of annular Mindlin plates with internal concentric ring supports
subject to in-plane radial pressure (Liew et al., 1994b) and the vibration of annular sectorial Mindlin plates
with internal radial line and circumferential arc supports (Liew et al., 1995). Abrate and his co-worker
(Abrate, 1994, 1995, 1996; Abrate and Foster, 1995) studied the vibration of rectangular and triangular
composite plates with internal supports, using the Rayleigh–Ritz method and the Lagrange multiplier
technique. Lovejoy and Kapania (1996) studied the vibration of generally laminated quadrilateral, thick
plates with point supports. Cheung and Zhou studied the vibration of a rectangular plate simply supported
at two opposite edges with arbitrary number of elastic line supports in one way (Zhou, 1996), the eigen-
frequencies of tapered rectangular plates with intermediate line supports (Cheung and Zhou, 1999a) and the
vibration of rectangular composite plates with point-supports (Cheung and Zhou, 1999b). More recently,
they considered the vibration of rectangular plates with elastic intermediate line-supports and edge con-
straints (Cheung and Zhou, 2000a), the vibration of thick, layered rectangular plates with point-supports
(Cheung and Zhou, 2000b) and the vibration of symmetrically laminated rectangular plates with inter-
mediate line supports (Cheung and Zhou, 2001). Saadatpour et al. (2000) studied the vibration of simply
supported plates of general shape with internal point and line supports using the Galerkin method.

It is important to note that in most real-world structures, the support topology is both complex and
irregular as required by engineering designs. For instance, commercial and military aircraft are often
subjected to high levels of acoustic pressure. Therefore, they may vibrate with large amplitude displace-
ments, i.e., with geometrical nonlinearity. Such nonlinearity may cause multi-modal interaction and lead to
internal resonance. One of the most efficient methods to avoid the damage of the internal resonance is to
introduce irregular internal supports. However, almost all of the literature in the field is limited to plates
with simple and/or regular internal support topologies. The problem of plates with a large number of ir-
regular supporting points seems having not been addressed in the literature, to our knowledge. Technically,
it is more difficult to analyze plates with irregular internal supports. The problem is far more complicated to
admit an analytical solution. Other commonly used methods encounter difficulties in one way or another.
For example, it is relatively easy for the pb-2 Ritz method to treat plates with complex ring supports and
any other internal support topology as long as it can be expressed as a continuous polynomial function
(Liew et al., 1998). However, the efficiency of the Ritz method is dramatically reduced if the internal
support topology cannot be analytically expressed. Moreover, we found that the pb-2 Ritz method, when
used with the penalty approach to treat point supports, is unable to provide a convergent solution when the
number of support points is relatively large. In such a case, the matrix of the eigenvalue problem becomes
ill-conditioned. Another class of commonly used analysis methods in the field are the local approaches,
such as finite element methods. Obviously, they are very flexible in handling the complex and irregular
internal support conditions. However, the speed of convergence of conventional local methods is relatively
low under complex and irregular internal support conditions due to the inherent low order approximations
used. Therefore, there is a need to call for more efficient and robust methods for handling this class of
engineering problems.

Discrete singular convolution (DSC) is a promising approach to resolve the aforementioned problems.
The DSC concerns with the computer realization of singular convolutions (SCs) (Wei, 1999a, 2000a,
2001a). Its mathematical foundation is the theory of distributions (Schwarz, 1951) and wavelet analysis.
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Numerical treatment of image processing, surface fitting and solution of differential equations is formulated
via the singular kernels of the delta type. By appropriately selecting parameters of a DSC kernel, the DSC
approach exhibits controllable accuracy for approximations and shows excellent flexibility in handling
complex geometries, boundary and internal support conditions. It was demonstrated (Wei, 2000a) that
different implementations of the DSC algorithm, such as global, local, Galerkin, collocation, and finite
difference, can be deduced from a single starting point. Thus, the DSC algorithm provides a unified rep-
resentation to these numerical methods. The DSC algorithm has found its success in solving the Fokker–
Planck equation (Wei, 1999a, 2000a), the Schr€oodinger equation (Wei, 2000b), the Navier–Stokes equation
for incompressible fluid flow (Wei, 2001a; Wan et al., 2001). In the context of image processing, DSC
kernels were used to facilitate a new anisotropic diffusion operator for image restoration from noise cor-
ruption (Wei, 1999b). Most recently, the DSC algorithm was used to resolve a few numerically challenging
problems. For example, it was utilized to integrate the sine-Gordon equation with the initial values close to
a homoclinic manifold singularity (Wei, 2000c), for which conventional local methods encounter great
difficulties and result in numerically induced chaos (Ablowitz et al., 1996). Another difficult example re-
solved by using the DSC algorithm is the integration of the Cahn–Hilliard equation in a circular domain,
which is challenging because of the fourth order artificial singularity at the origin and the complex phase
space geometry (Guan et al., 2001). The algorithm was utilized to facilitate a novel synchronization scheme
for shock capturing (Wei, 2001b). What is the most relevant to the present work is the use of the DSC
algorithm for beam and plate analysis (Wei, 2001a, 1999c,d). Previous successful examples include plate
vibration under homogeneous (Zhao and Wei, submitted for publication) and mixed (Wei et al., 2001)
boundary conditions, and with partial internal line supports (Wei et al., in press) and the analysis of plates
with a circular shape (Wei, 2001a).

One objective of this paper is to call further attention to the study of the vibration of plates with complex
and irregular internal supports. We illustrate the solution of the problem by using a few case studies.
Another objective is to demonstrate the utility, robustness, and efficiency of the DSC algorithm in handling
this class of problems. The validity of the DSC method for vibration analysis of plates is verified by
convergence study and by a comparison with the results obtained by using the pb-2 Ritz method, which
works well for a relatively simpler case. The DSC method is also tested by using irregular support points
generated from random noise. The combination of a few different boundary conditions and irregular in-
ternal supports is considered in the present investigation. The topologies of irregular internal supports are
generated using an image processing algorithm.

This paper is organized as follows. In Section 2, we briefly review the DSC algorithm and discuss its
application to the vibration analysis of plates. Numerical results and analysis are given in Section 3.
Conclusion is made in Section 4.

2. The problem and methods of solution

The problem of plate vibration with different boundary conditions and internal supports is described.
For integrity and convenience, the DSC algorithm is briefly reviewed in this section. However, the reader is
referred to the original work for more detailed information (Wei, 1999a, 2000a, 2001a). The implemen-
tation of the DSC algorithm to plate analysis is described.

2.1. Plate vibration

Although we limit our attention to the vibration of rectangular (classic) Kirchhoff plates with simply
supported, clamped and transversely supported edges, the method can be used for many other applications
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in solid mechanics. Let us consider a rectangular plate of length a, width b, thickness h, mass density q,
modulus of elasticity E, and Poisson’s ratio m. The origin of the Cartesian coordinates ðx; yÞ is set at the
lower left corner of the plate. The governing differential equation for the plate is given by (Timoshenko and
Woinowsky-Krieger, 1970)

o4w
ox4

þ 2
o4w

ox2 oy2
þ o4w

oy4
¼ qhx2

D
w; ð1Þ

where wðx; yÞ is the transverse displacement of the midsurface of the plate, D ¼ Eh3=½12ð1� m2Þ� the flexural
rigidity, and x the circular frequency. We consider one of the following three types of support conditions
for each plate edge:

For simply supported edge ðSÞ

w ¼ 0; �D
o2w
on2

�
þ m

o2w
os2

�
¼ 0: ð2Þ

For clamped edge ðCÞ

w ¼ 0;
ow
on

¼ 0: ð3Þ

For transversely supported edge with nonuniform elastic rotational restraint ðEÞ

w ¼ 0; �D
o2w
on2

�
þ m

o2w
os2

�
¼ KðsÞ ow

on
; ð4Þ

where KðsÞ is the varying elastic rotational stiffness of the plate elastic edge and n and s denote, respectively,
the normal and tangential coordinates with respect to the rectangular plate edge.

2.2. Discrete singular convolution

SCs are a special class of mathematical transformations, which appear in many science and engineering
problems, such as Hilbert transform, Abel transform and Radon transform. It is most convenient to discuss
the SC in the context of the theory of distributions. Let T be a distribution and gðtÞ be an element of the
space of test functions. A SC is defined as

F ðtÞ ¼ ðT � gÞðtÞ ¼
Z 1

�1
T ðt � xÞgðxÞdx: ð5Þ

Here T ðt � xÞ is a singular kernel. Depending on the form of the kernel T, the SC is the central issue for a
wide range of science and engineering problems. An important example is singular kernels of the delta type

T ðxÞ ¼ dðnÞðxÞ ðn ¼ 0; 1; 2; . . .Þ: ð6Þ

Here, kernel T ðxÞ ¼ dðxÞ is of particular importance for interpolation of surfaces and curves (including
atomic, molecular and biological potential energy surfaces, engineering surfaces and a variety of image
processing and pattern recognition problems involving low-pass filters). Higher-order kernels, T ðxÞ ¼
dðnÞðxÞ ðn ¼ 1; 2; . . .Þ, are essential for numerically solving partial differential equations (PDEs) and
for image processing, noise estimation, etc. However, since these kernels are singular, they cannot be
directly digitized in computers. Hence, the SC (Eq. (5)) is of little numerical merit. To avoid the difficulty of
using singular expressions directly in computer, we construct sequences of approximations ðTaÞ to the
distribution T
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lim
a!a0

TaðxÞ ! T ðxÞ; ð7Þ

where a0 is a generalized limit. Obviously, in the case of T ðxÞ ¼ dðxÞ, each element in the sequence, TaðxÞ, is
a delta sequence kernel. Note that one retains the delta distribution at the limit of a delta sequence kernel.
Computationally, the Fourier transform of the delta distribution is unity. Hence, it is a universal repro-
ducing kernel for numerical computations and an all pass filter for image and signal processing. Therefore,
the delta distribution can be used as a starting point for the construction of either band-limited reproducing
kernels or approximate reproducing kernels. By the Heisenberg uncertainty principle, exact reproducing
kernels have bad localization in the time (spatial) domain, whereas, approximate reproducing kernels can
be localized in both time and frequency representations. Furthermore, with a sufficiently smooth ap-
proximation, it is useful to consider a DSC

FaðtÞ ¼
X
k

Taðt � xkÞf ðxkÞ; ð8Þ

where FaðtÞ is an approximation to F ðtÞ and fxkg is an appropriate set of discrete points on which the DSC
(8) is well defined. Note that, the original test function gðxÞ has been replaced by f ðxÞ. The mathematical
property or requirement of f ðxÞ is determined by the approximate kernel Ta. In general, the convolution is
required being Lebesgue integrable.

For practical use in structure mechanics, we give several examples of delta sequence kernels, or delta
kernels. A simple example is Shannon’s kernel, i.e.,

sin ax
px

: ð9Þ

Other important examples include the Dirichlet kernel

sin½ðk þ 1
2
Þx�

2p sin 1
2
x

; ð10Þ

the modified Dirichlet kernel

sin½ðk þ 1
2
Þx�

2p tan 1
2
x

; ð11Þ

and the de la Vall�eee Poussin kernel

1

pa
cos ax� cos 2ax

x2
: ð12Þ

It is noted that a sequence of approximation can be improved by a regularizer (Wei, 1999a)

lim
r!1

RrðxÞ ¼ 1: ð13Þ

The regularizer is designed to increase the regularity of convolution kernels. For the delta sequence, it
follows from Eq. (7) thatZ

lim
a!a0

TaðxÞRrðxÞdx ¼ Rrð0Þ: ð14Þ

Obviously, Rrð0Þ ¼ 1, is a special requirement for a delta regularizer. A typical delta regularizer used in the
present paper is expð�x2=2r2Þ. Therefore, Shannon’s kernel is regularized as

sinðp=DÞðx� xkÞ
ðp=DÞðx� xkÞ

! sinðp=DÞðx� xkÞ
ðp=DÞðx� xkÞ

exp½�ðx� xkÞ2=2r2�: ð15Þ
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Since expð�x2=2r2Þ is a Schwartz class function, it makes the regularized kernel applicable to tempered
distributions. Numerically, the regularized expressions perform much better than Shannon’s kernel for
being used in a local approach for solving PDEs.

Similarity, the Dirichlet kernel can be regularized as

sin k þ 1
2

� �
ðx� xkÞ

� �
2p sin 1

2
ðx� xkÞ

� � !
sin p

D ðx� xkÞ
� �

ð2M þ 1Þ sin p
D

x�xk
2Mþ1

	 
 exp½�ðx� xkÞ2=2r2�: ð16Þ

In comparison to Shannon’s kernel, the Dirichlet kernel has one more parameterM which can be optimized
to achieve better results in computations. Usually, we select the value of 2M þ 1 to be the grid number N for
the periodic problems. Obviously, the Dirichlet kernel converts to Shannon’s kernel at the limit of M ! 1.

Usually, a symmetrically (or antisymmetrically) truncated DSC kernel is used to approximate the nth
order derivative of a function f ðxÞ as follows

f ðnÞðxÞ 

XM
k¼�M

dðnÞ
a;rðx� xkÞf ðxkÞ n ¼ 0; 1; 2; . . . ; ð17Þ

where 2M þ 1 is the computational bandwidth, or effective kernel support, which is usually smaller than the
whole computational domain, and dðnÞ

a;r is a collective symbol for the nth order derivative of any of the right-
hand side of Eqs. (15) and (16).

Qian and Wei (submitted for publication) have recently provided a mathematical estimation of ap-
proximation errors. Their results provide a guide for the choice of M, r and D. For example, if the L2 error
for approximation and L2 function f is set to 10�g ðg > 0Þ, the following relations are to be satisfied

rðp � BDÞ >
ffiffiffiffiffiffiffiffiffiffiffi
4:61g

p
;

M
r
>

ffiffiffiffiffiffiffiffiffiffiffi
4:61g

p
; ð18Þ

where r ¼ r=D and B is the frequency bound for the function of interest. The first inequality states that for a
given grid size D, a large r is required for approximating high frequency component of an L2 function. The
second inequality indicates that if ratio r is chosen, then an appropriate computational support can be used
to ensure a given accuracy 10�g. This theoretical estimation is in good agreement with previous numerical
tests (Wei, 2000a). The implementation of the DSC algorithm for structural analysis is described below.

2.3. Implementation of the DSC algorithm to plate analysis

For generality and simplicity, the following dimensionless parameters are introduced:

X ¼ x
a
; Y ¼ y

b
; W ¼ w

a
; k ¼ a

b
; X ¼ xa2

ffiffiffiffiffiffi
qh
D

r
: ð19Þ

Accordingly, we obtain the dimensionless governing equation for the vibration analysis of a rectangular
plate as:

o4W
oX 4

þ 2k2 o4W
oX 2 oY 2

þ k4 o
4W
oY 4

¼ X2W : ð20Þ

Consider a uniform grid having

0 ¼ X0 < X1 < � � � < XNX ¼ 1;

and

0 ¼ Y0 < Y1 < � � � < YNY ¼ 1:
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To formulate the eigenvalue problem, we introduce a column vector W as

W ¼ ðW0;0; . . . ;W0;NY ;W1;0; . . . ;WNX ;NY Þ
T
; ð21Þ

with ðNX þ 1ÞðNY þ 1Þ entries Wi;j ¼ W ðXi; YjÞ, ði ¼ 0; 1; . . . ;NY ; j ¼ 0; 1; . . . ;NY Þ.
Let us define the ðNq þ 1Þ � ðNq þ 1Þ differentiation matrices Dn

q (q ¼ X ; Y ; n ¼ 1; 2; . . .), with their ele-
ments given by

Dn
q

h i
i;j
¼ dðnÞ

r;Dðqi � qjÞ; ði; j ¼ 0; . . . ;NqÞ; ð22Þ

where dr;Dðqi � qjÞ is obtained from the regularized Shannon’s kernel (15). However, many other DSC
kernels can also be used (Wei, 2001a). The differentiation in Eq. (22) can be analytically carried out

dðnÞ
r;Dðqi � qjÞ ¼

d

dq

� �n

dr;Dðq
�

� qjÞ
�
q¼qi

¼ Cn
m; ð23Þ

where, for a uniform grid spacing, m ¼ ðqi � qjÞ=D. Here the matrix is banded to i� j ¼ m ¼
�M ; . . . ; 0; . . . ;M . Therefore, in the matrix notation, the governing eigenvalue equation (20) is given by

D4
X

�
� IY þ 2k2D2

X �D2
Y þ k4IX �D4

Y

�
W ¼ X2W; ð24Þ

where Iq is the ðNq þ 1Þ2 unit matrix and � denotes the tensorial product. Eigenvalues can be evaluated
from Eq. (24) by using a standard solver. However, appropriate boundary conditions need to be imple-
mented before the eigenvalues can be obtained. This is described below.

We first note that boundary condition W ¼ 0 is easily specified at an edge. To implement other boundary
conditions, we assume, for a function f, the following relation between the inner nodes and the outer nodes
on the left boundary

f ðX�mÞ � f ðX0Þ ¼
XJ
j¼0

aj
mX

j
m

 !
ðf ðXmÞ½ � f ðX0Þ�; ð25Þ

where coefficients aj
m ðm ¼ 1; . . . ;M ; j ¼ 0; 1; . . . ; JÞ are to be determined by the boundary conditions. For

the three types of boundary conditions described earlier, we only need to consider the zeroth order term in
the power of X j. Therefore we set a0m � am and, after rearrangement, obtain

f ðX�mÞ ¼ amf ðXmÞ þ ð1� amÞf ðX0Þ; m ¼ 1; 2; . . . ;M : ð26Þ
According to Eq. (23), the first and the second derivatives of f on the boundary are approximated by

f 0ðX0Þ ¼
XM

m¼�M

C1
mf ðXmÞ ¼ C1

0

"
�
XM
m¼1

ð1� amÞC1
m

#
f ðX0Þ þ

XM
m¼1

ð1� amÞC1
mf ðXmÞ; ð27Þ

and

f 00ðX0Þ ¼
XM

m¼�M

C2
mf ðXmÞ ¼ C2

0

"
þ
XM
m¼1

ð1� amÞC2
m

#
f ðX0Þ þ

XM
m¼1

ð1þ amÞC2
mf ðXmÞ; ð28Þ

respectively.
For simply supported edges, the boundary conditions may be reduced to

f ðX0Þ ¼ 0; f 00ðX0Þ ¼ 0: ð29Þ
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These are satisfied by choosing am ¼ �1, m ¼ 1; 2; . . . ;M . This is the so called anti-symmetric extension
(Wei, 1999a).

For clamped edges, the boundary conditions require

f ðX0Þ ¼ 0; f 0ðX0Þ ¼ 0: ð30Þ
These are satisfied by am ¼ 1, m ¼ 1; 2; . . . ;M . This is the symmetric extension (Wei, 1999a).

For a transversely supported edge, the boundary conditions are

f ðX0Þ ¼ 0; f 00ðX0Þ � Kf 0ðX0Þ ¼ 0: ð31Þ

Hence, the equation is given by

XM
m¼1

ð1þ amÞC2
mf ðXmÞ � K

XM
m¼1

ð1� amÞC1
mf ðXmÞ ¼ 0: ð32Þ

Further simplification of the above equation gives

XM
m¼1

½ð1þ amÞC2
m � Kð1� amÞC1

m�f ðXmÞ ¼ 0: ð33Þ

One way to satisfy Eq. (33) is to choose

am ¼ KC1
m � C2

m

KC1
m þ C2

m

; m ¼ 1; 2; . . . ;M : ð34Þ

Expressions for the right, top and bottom boundaries can be derived in a similar way.
Further complication occurs if the coefficient K is not a constant. For example, the rotational spring

coefficients of the continuous nonuniform (elastic) boundary conditions are taken as

K1ðY Þ ¼ K2ðY Þ ¼ K 0 ðY � l1Þðl2 � Y Þ
ðl2 � l1Þ

; ð06 l1 < l2 6 1Þ; ð35Þ

K3ðX Þ ¼ K4ðX Þ ¼ K 0 ðX � l01Þðl02 � X Þ
ðl02 � l01Þk

; ð06 l01 < l02 6 1Þ; ð36Þ

where K 0 is the nondimensional spring coefficient, K 0 ¼ K0a3=D, and l1ðl01Þ, l2ðl02Þ are the nondimensional
starting and ending points of elastic boundary, respectively. Another complication is due to the possible
presence of irregular internal support condition. Hence, matrices D4

X , D
4
Y , D

2
X , D

2
Y , IX and IY become three-

dimensional ones in this work and are denoted by 4
X ,

4
Y ,

2
X ,

2
Y , X and Y . The matrix elements of

p
X , ðp ¼ 2; 4Þ are denoted by dp

X ;ijk, ði; j ¼ 0; 1; 2; . . . ;NX ; k ¼ 0; 1; 2; . . . ;NY Þ and matrix elements of X is
denoted by dij � 1k, ðk ¼ 0; 1; 2; . . . ;NY Þ. p

Y and Y are similarly defined by appropriately switching the
roles of the subscripts.

Let us define a contractive tensor product _�� of two three-dimension matrices A and B as the tensor
product on the first two indices of A and B, and contraction between the first and the third indices of
the two matrices

ðA�_ BÞijkl ¼ aijkbkli; ð37Þ

where aijk and bkli are matrix elements of A and B, respectively. In such a notation, Eq. (24) is modified as

4
X�_ Y :þ 2k2 2

X�_ 2
Y :þ k4

Y�_ 4
Y �iðNyþ1Þþkþ1; jðNyþ1Þþ1þ1W ¼ X2W;

h
ð38Þ
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where the lexicographic ordering given in Eq. (21) is used for reducing four-dimensional matrices into two-
dimensional forms. Matrix elements in Eq. (38) are ready for being used in a linear equation solver

and
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Assume that the set of internal support points are given by fðXi0 ; Yj0 Þg, the internal support conditions
(Wi;j ¼ 0; 8ðXi; YjÞ 2 fðXi0 ; Yj0 Þg) are specified pointwisely in the matrix construction.

3. Results and discussion

The numerical algorithm proposed in this paper may be applied to square plates of various boundary
conditions, including simply supported, clamped and transversely supported edges and many of their
combinations. As an illustration of the DSC algorithm, square plates with uniform boundary conditions
are chosen in this study.

The computational domain for a nondimensional plate is taken to be [0,1]� [0,1] in all computations.
We set the DSC parameter r=D ¼ 2:5, 2.6, 2.8, 3.0, 3.2, 3.5, 3.5 for the number of grid points Nq ¼ 16, 20,
24, 28, 32, 40, 67, respectively. To be consistent with the literature, the frequency parameters reported in
this paper are all scaled by a factor of p2, i.e., X=p2, where the X is given in Eq. (19).

The internal supports are selected including a pattern of double rhombuses, randomly distributed points,
and a few images. The geometry of the double rhombuses is specified in Table 1. The randomly distributed
support points are produced from a random noise generator. Twenty internal points that have absolute
values larger or equal to a given value are selected from the full set of 112 grid (see Table 2). Six image
patterns of 682 pixels are obtained from the Microsoft Word Clip Art pictures, and treated by using a DSC-
wavelet edge detector. A summary of these images is given in Table 3. The numbers of nontrivial points of
the Cherub, the ornament, the tractor, the car, the horse and the Washington are 669, 615, 715, 817, 430
and 823, respectively. In plate analysis, all support points are taken from the positions consisting the
images. The coordinate values of all images and patterns used in this work are available through web
download at http://www.cz3.nus.edu.sg/�guowei/research/zhaoyb.

Convergence and comparison studies are conducted in the first subsection. Some frequency parameters
obtained by using the DSC algorithm are confirmed by using a completely independent method, the pb-2
Ritz method, which has been validated for plate analysis in a number of previous publications (Liew et al.,
1994a; Kitipornchai et al., 1994; Liew et al., 1998).

Table 1

Convergence study of frequency parameters X=p2 for SSSS and CCCC square plates with double rhombus supports

SSSS CCCC

DSC pb-2 Ritz DSC pb-2 Ritz

N ¼ 17 N ¼ 25 N ¼ 33 N ¼ 17 N ¼ 25 N ¼ 33

Mode 1 15.1789 15.2325 15.2651 15.3022 21.9670 21.9946 22.0230 22.0873

Mode 2 15.2524 15.3234 15.3594 15.4493 21.9824 22.0234 22.0562 22.1116

Mode 3 15.2816 15.3422 15.3784 15.4726 22.1143 22.1510 22.1837 22.2460

Mode 4 15.3497 15.4336 15.4734 15.4775 22.1155 22.1704 22.2074 22.2629

Mode 5 21.5714 21.6346 21.7013 21.9740 29.0398 29.0894 29.1755 29.4813

Mode 6 21.6093 21.6784 21.7472 22.1864 29.0638 29.1173 29.2052 29.6120

Mode 7 27.4990 27.4657 27.4784 27.7567 36.1307 35.9141 35.8895 36.2446

Mode 8 27.7869 27.7910 27.8153 28.0800 36.7261 36.5061 36.4820 37.1527
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3.1. Convergence and comparison studies

Although the validity and accuracy of the proposed DSC method were verified in the study of plate
vibration under partial line supports (Wei et al., in press), the topology of previous problem is much
simpler. In the present work, we further verified the reliability of the DSC algorithm for complex and ir-
regular supports.

Convergence study is performed for simply supported and clamped square plates with a complex in-
ternal support geometry of an overlapped double rhombus pattern. Frequency parameters for the first
eight modes of the two vibrating plates are presented in Table 1. Three sets of DSC grid points, varying
from 172 to 332, are used to generate the frequency parameters. It is observed that, except for mode 7, the
frequency parameters for the two plates increase monotonically as the number of grid points increases.
When the number of DSC grid points reaches 252, the frequency parameters for the first eight modes in the
two plates converge to a satisfactory level. Note that to ensure a certain level of reliability, all vibration
frequencies presented in the case study are calculated based on a much larger number of DSC grid points
(682).

To confirm the correctness of DSC results for thin plate analysis, we employed a completely independent
approach, the pb-2 Ritz method (Wang et al., 1997), for a comparison study. The penalty approach is
adopted in the pb-2 Ritz method to treat the point supports. The double rhombuses are simulated by a
series of points along the rhombuses. The Ritz results in Table 1 are obtained with 20 degrees of com-
plete two-dimensional polynomials being the Ritz trial functions. It is observed that the DSC results and
the Ritz results are in good agreement in general.

We next test the reliability of the DSC algorithm for simply supported and clamped square plates with
twenty randomly distributed support points. We hope that this test will act as a basis for the DSC algorithm
for handling plates with irregular support conditions. Three sets of DSC grid points (212, 312 and 412) are
used to generate the frequency parameters. The convergence speed of the first eight frequency parameters is
presented in Table 2. Contrast to the vibration of plates with a double rhombus pattern, the frequency
parameters for the two plates decrease monotonically as the number of grid points increases. It is seen that
the DSC calculation converges well when the number of grid point reaches 312. For a comparison, results
obtained by using the independent pb-2 Ritz method are also listed in Table 2. The Ritz results are gen-
erated with 20� of complete two-dimensional polynomials. For reliability, only the first eight modes are

Table 2

Convergence study of frequency parameters X=p2 for SSSS and CCCC square plates with 20 random point supports

SSSS CCCC

DSC pb-2 Ritz DSC pb-2 Ritz

N ¼ 21 N ¼ 31 N ¼ 41 N ¼ 21 N ¼ 31 N ¼ 41

Mode 1 13.8773 13.8325 13.8176 14.0119 14.5752 14.5165 14.4964 14.7600

Mode 2 17.4501 17.3929 17.3735 17.6255 22.7393 22.6760 22.6555 22.8537

Mode 3 19.9222 19.8300 19.7955 20.2684 24.4075 24.2807 24.2370 24.7466

Mode 4 20.4916 20.3943 20.3626 20.6783 25.5845 25.4468 25.4002 25.8383

Mode 5 23.5859 23.4864 23.4512 23.8646 26.6810 26.4528 26.3734 27.4304

Mode 6 24.0239 23.8775 23.8259 24.5362 28.6259 28.3536 28.2525 29.7271

Mode 7 26.1098 25.9175 25.8383 26.3928 32.0602 31.8502 31.7786 32.5042

Mode 8 26.2185 26.0953 26.0664 26.9833 32.5884 32.3479 32.2693 33.0650
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Table 3

Frequency parameters X=p2 for the six selected cases

SSSS Mode 1 23.7870 15.5935 12.8348 18.8348 14.8802 32.3169

Mode 2 23.8699 18.3154 25.1450 37.5434 17.0974 42.6262

Mode 3 42.9120 28.0878 25.5118 44.7970 29.5801 45.1022

Mode 4 43.0637 32.5215 31.3190 48.9095 29.6931 45.5490

Mode 5 54.9932 33.8671 40.5701 53.4051 32.6003 54.9473

Mode 6 55.0451 34.2835 40.8128 55.7894 35.8931 62.7819

Mode 7 56.7939 36.4462 46.3491 61.7358 44.0344 66.4590

Mode 8 61.2063 45.7413 47.9205 63.6806 45.1425 71.9517

CCCC Mode 1 34.0157 21.2111 17.4941 26.0067 20.7572 45.5249

Mode 2 34.1405 25.2005 26.3664 48.5143 23.8770 46.5188

Mode 3 56.2428 40.1946 31.7474 55.3379 32.8085 59.7737

Mode 4 56.5895 40.4925 38.6097 63.6806 37.4967 64.3192

Mode 5 56.8031 42.2503 44.7575 69.8759 38.5263 66.4694

Mode 6 61.1953 44.5748 46.3745 71.0829 44.4396 73.0482

Mode 7 69.7622 48.9217 49.7625 72.7538 54.6652 74.0563

Mode 8 69.8185 56.9584 55.3288 85.0820 55.2696 92.0147

EEEE Mode 1 27.6471 18.2417 15.2346 21.8460 17.6691 36.8347

Mode 2 27.7388 21.3415 25.7674 42.1303 20.1875 45.5500

Mode 3 48.0772 32.2697 28.3115 47.6566 32.6855 47.2231

Mode 4 48.3004 35.8982 34.2065 54.8586 33.2482 50.0585

Mode 5 56.7966 37.3695 42.5653 60.5822 33.5550 61.1172

Mode 6 59.1281 38.5414 44.7299 61.4458 38.5358 66.4659

Mode 7 59.1890 39.2164 46.3560 63.6806 47.5762 66.6764

Mode 8 61.2447 49.3598 50.3239 69.5491 49.1360 77.5475
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listed. Since, it is well known that the Ritz method does not work well for higher-order vibration modes. It
is seen that results obtained by using both methods for the first few frequency parameters are in excellent
agreement.

3.2. Case study

Having built up our confidence for using the DSC approach for plate vibration analysis with irregular
support conditions, we consider vibration analysis of plates under image supports. For simplicity, the cases
presented in this subsection are for square plates with three prescribed boundary conditions, i.e. simply
supported at four edges (SSSS), clamped at four edges (CCCC) and transversely supported edges with
nonuniform elastic rotational restraint (EEEE). The elastic support edge is considered as a simply sup-
ported edge with rotational spring constraint along the edge. The spring stiffness parameter is taken to be
100 in the present study. In fact, the geometry and support conditions resemble a notice board and/or
advertisement board. As the size (number of pixels) is fixed for each image, the frequency parameters are
computed by using 682 grid points for each image. We should point out that the pb-2 Ritz method was
unable to give converged results due to the large number of internal support points.

Table 3 lists the first eight frequency parameters for each image under three different boundary condi-
tions. For the simply supported plate (SSSS), the tractor (715 support points) has the lowest first frequency
parameter (12.8348) among all images. This is because it has the largest connected free space comparing to
other images. For a similar reason, the Washington (823 support points) has the highest first frequency
parameter (32.3169). Although the horse has lowest number of support points (430 support points), its first
frequency parameter of 14.8802 is slightly higher than that of the tractor. The same trend is observed for
plates with the other two boundary conditions (i.e., CCCC and EEEE). In general, the clamped plate has
the highest first frequency parameters for all six images.

The mode shapes of the simply supported plate with the six images are given in Figs. 1–6, respectively. In
Fig. 1, the first vibration mode is localized to the lower right corner of the Cherub. In fact, modes 3 and 6
are also restricted to the lower right corner of the image. Modal localization phenomenon is very common
in irregularly supported system since, topologically, image is essentially segmented into a few isolated re-
gions. The largest region supports the lowest vibration mode. In fact, the size of the largest region deter-
mines the lowest value of the frequency parameter. Since the lower left corner has a size comparable to that
of the lower right one, it accommodates the second vibration mode. Apparently, there are sizable indents
crossing the support boundary of the heart in modes 2 and 6, which exhibit certain nonlocal nature in the
mode shapes.

The ornament, as shown in Table 3, has four distinct free regions, of which the largest one is on the
upper-left corner. Its modal morphology is plotted in Fig. 2. It is observed that the first vibration mode is
a prime mode and is localized on the upper-left corner. Other three corners have local modes 2, 3 and 5
respectively. Modes 4 and 6 are the first excited (secondary) modes for upper-left and upper-right corners,
respectively.

The morphology of the lowest few modes in Figs. 3 and 4 is also localized to largest free spatial regions.
The principle for modal distribution is similar to that described in the last two paragraphs. Fig. 4 the mode
distribution of the horse, has an interesting case. Its mode 5 locates essentially in the interior part of the
horse. However, much of the vibration energy penetrates across the thin support boundary.

The Washington image has the most irregular distribution and the largest number of support points. As
a consequence, its first frequency parameter is the highest among the six images. Fig. 6 depicts the modal
distribution of the Washington. Mode 4 is of interest and is located at the forehead of the Washington.
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The localization phenomenon discussed in this work is related to engineering designs because different
materials can be used in different portions of the plate so that resonance damage can be effectively avoided.

4. Conclusions

This paper addresses the issue of vibration analysis of plate with complex and irregular support con-
ditions. The problem is of practical importance to the real-world structural designs, such as for eliminating

Fig. 1. Mesh and contour plots for the first six eigenmodes of the Cherub.
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internal resonance, and for modeling vibration of advertising broad. Numerically, this class of problems are
quite challenging to conventional local methods and global methods. The local approaches might not have
sufficient accuracy and the global methods might not have enough flexibility for the support conditions. For
example, we found that the pb-2 Ritz method encounters difficulty in calculating frequency parameters
when the number of support points is relatively large. In such a case, the solution matrix constructed by the
pb-2 Ritz method becomes ill-conditioned. In the present work, we introduce a novel computational
method, the DSC, for this class of problems. The DSC approach has its theoretical foundation in terms of
mathematical distributions and wavelet analysis.

Fig. 2. Mesh and contour plots for the first six eigenmodes of the ornament.
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Two special examples are designed for convergence study. The first example is a square plate with double
rhombus supports. The support geometry is selected because validity of the DSC algorithm can be verified
by another completely independent approach, the pb-2 Ritz method. Two boundary conditions, the SSSS
and CCCC, are considered in our test calculation. In this test example, the DSC algorithm converges very
well at 252 grid points. The results of two independent methods are consistent with each other. Our second
test example is a square plate with randomly distributed support points. The number of random points is
limited to twenty, a case the pb-2 Ritz method can also manage to provide reliable results. For the random
nature of the problem, a reasonable estimation of frequency parameter will be sufficient. In fact, the DSC

Fig. 3. Mesh and contour plots for the first six eigenmodes of the tractor.
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readily provides excellent results at a small mesh of 212 for both the simply supported and clamped square
plates. Once again, the DSC results are in excellent agreement with those of the pb-2 Ritz method generated
by using 20 degrees of complete two-dimensional polynomials.

Six different images are selected to illustrate the possible internal support conditions one might en-
counter in practical applications. All images are very complicated and the pb-2 Ritz method has difficulty to
produce convergent results in these cases. Three typical boundary conditions, the simply supported four
edges, clamped four edges and transversely supported four edges, are considered in the present vibration

Fig. 4. Mesh and contour plots for the first six eigenmodes of the car.
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analysis. Frequency parameters of the first eight eigenmodes have been presented for these eighteen distinct
cases. The modal morphology is plotted for the first six eigenmodes for plates with simply supported edges.
It is observed that modal localization is a common phenomenon under complex and irregular internal
support conditions. The lowest vibration energy is localized to the largest support-free spatial region. We
believe that this modal localization is important to engineering design, including plate support topology
optimization and material selection. The application of the present method to thick plates which involve
higher order theories is under consideration.

Fig. 5. Mesh and contour plots for the first six eigenmodes of the horse.
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